B.SC. THIRD SEMESTER (HONOURS) EXAMINATION 2021

Subject: Mathematics Course ID: 32115

Course code: SH/MTH/305/SEC-1 Course Title: Logic and Sets

Time: 2 Hours Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) Show that $R = \{(x, y) : (x y) \text{ is divisible by } 7\} \subset \mathbb{Z} \times \mathbb{Z} \text{ is an equivalence relation on } \mathbb{Z}.$
- (b) Let $A = \{x \in \mathbb{Z} : 0 \le x \le 10\}$ and $B = \{x \in \mathbb{Z} : x \le 15\}$. Find A B.
- (c) Determine the power set of $A = \{1, 2, 3, 4\}$.
- (d) Find all the equivalence relations on the set $S = \{a, b, c\}$.
- (e) If $A \cup B = A \cup C$ and $A \cap B = A \cap C$ then prove that B = C.
- (f) Let A, B be two subsets of an universal set. Prove that A = B if and only if $A\Delta B = \emptyset$.
- (g) Construct the truth table for the statement formula $(\sim p \lor \sim q)$.
- (h) Find the negation of the following quantified predicates:

$$(\exists x, y \in D)(x + y = 3).$$

2. Answer any four question:

 $5 \times 4 = 20$

(a) (i) For any three non-empty sets A, B, C prove that

$$A \times (B \cap C) = (A \times B) \cap (A \cap C).$$

- (ii) Show that the sets $A = \{2, 1\}$ and $B = \{x \in \mathbb{R}: x^2 3x + 2 = 0\}$ are equal. 3+2
- (b) If $A = \{5, 6, 7, 8, 9\}$, $B = \{2, 4, 6, 8, 10, 12\}$ and $C = \{3, 6, 9, 12\}$, then find

$$A \cap (B \cap C)$$
, $A \cup (B \cup C)$, $A \cup (B \cap C)$, $A \cap (B \cup C)$, $A - (B \cup C)$.

$$1+1+1+1+1=5$$

- (c) (i) Prove that intersection of two equivalence relations on a set A is an equivalence relation on A.
 - (ii) Is union of two equivalence relations an equivalence relation? Justify your answer.

$$3 + 2 = 5$$

(d) It is known that in an university, 60% of professors play tennis, 50% of them play bridge, 70% jog, 20% play tennis and bridge, 40% play bridge and jog and 30% play tennis and jog. If someone claimed that 20% professors jog and play tennis and bridge, would you believe his claim? Justify.

- (e) (i) Show that the propositions $\sim (a \lor b)$ and $\sim a \land \sim b$ are logically equivalent.
 - (ii) Construct the truth table for the statement form: $(a \lor \sim b) \land c$.
- 3. Answer any one question:

 $10 \times 1 = 10$

- (a) (i) A relation ρ is defined on \mathbb{Z} by " $x\rho y$ iff 2x+3y is divisible by 5". Prove that ρ is an equivalence relation on \mathbb{Z} .
 - (ii) If $A\Delta B = A\Delta C$, then prove that B = C
 - (iii) Show that (A B) and $(A \cap B)$ are disjoint sets.

5+3+2

- (b) (i) Let p, q, r be three statements. Show that $p \land (q \lor r) = (p \land q) \lor (p \land r)$ (using truth table).
 - (ii) A relation ρ is defined on the set \mathbb{Z} by " $x\rho y$ if and only if x+y is odd" for $x,y\in\mathbb{Z}$. Examine whether ρ is reflexive, symmetric and transitive.
 - (iii) Let ρ be a binary relation on a set A. Then prove that ρ is transitive if and only if $\rho o \rho \subset \rho$.